A Fast Algorithm for Solving Regularized Total Least Squares Problems

نویسنده

  • JÖRG LAMPE
چکیده

The total least squares (TLS) method is a successful approach for linear problems if both the system matrix and the right hand side are contaminated by some noise. For ill-posed TLS problems Renaut and Guo [SIAM J. Matrix Anal. Appl., 26 (2005), pp. 457 476] suggested an iterative method which is based on a sequence of linear eigenvalue problems. Here we analyze this method carefully, and we accelerate it substantially by solving the linear eigenproblems by the Nonlinear Arnoldi method (which reuses information from the previous iteration step considerably) and by a modified root finding method based on rational interpolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Algorithms for Structured Least Squares and Total Least Squares Problems

We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z 1 and Z 2. We develop formulas for the generators of the matrix M (H) M in terms of the generators of M and show that the Cholesky factorization of the matrix M (H) M can be computed quickly if Z 1 is close to unitary and Z 2 is triangular and nilpotent. These...

متن کامل

Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers

This paper presents a new computational approach for solving the Regularized Total Least Squares problem. The problem is formulated by adding a quadratic constraint to the Total Least Square minimization problem. Starting from the fact that a quadratically constrained Least Squares problem can be solved via a quadratic eigenvalue problem, an iterative procedure for solving the regularized Total...

متن کامل

An ADMM Algorithm for Solving l_1 Regularized MPC

We present an Alternating Direction Method of Multipliers (ADMM) algorithm for solving optimization problems with an `1 regularized least-squares cost function subject to recursive equality constraints. The considered optimization problem has applications in control, for example in `1 regularized MPC. The ADMM algorithm is easy to implement, converges fast to a solution of moderate accuracy, an...

متن کامل

Convergence of an inertial proximal method for l1-regularized least-squares

A fast, low-complexity, algorithm for solving the `1-regularized least-squares problem is devised and analyzed. Our algorithm, which we call the Inertial Iterative Soft-Thresholding Algorithm (I-ISTA), incorporates inertia into a forward-backward proximal splitting framework. We show that I-ISTA has a linear rate of convergence with a smaller asymptotic error constant than the well-known Iterat...

متن کامل

Safe Subspace Screening for Nuclear Norm Regularized Least Squares Problems

Nuclear norm regularization has been shown very promising for pursing a low rank matrix solution in various machine learning problems. Many efforts have been devoted to develop efficient algorithms for solving the optimization problem in nuclear norm regularization. Solving it for large-scale matrix variables, however, is still a challenging task since the complexity grows fast with the size of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007